
CS 4530: Fundamentals of Software Engineering

Module 04 Code-Level Design Principles

Jon Bell, Adeel Bhutta, Mitch Wand

Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Describe the purpose of our best practices for code-level

design

• List 5 principles for designing readable code, with
examples

• Identify some violations of the practices and suggest
ways to mitigate them

2

Use Design As a Way of Communicating
Organization

3

• Software systems must be comprehensible by
humans

• Which humans?
• The other members of your team

• The folks who will maintain and modify your system

• Management

• Your clients

• and ...

• You, a week from now or 6 weeks from now

Use Design to Achieve Non-Functional
Qualities

• Readability – ease of reading code/understanding it

• Maintainability – ease of fixing defects

• Extensibility – ease of adding new components
without changing existing ones

• Configurability – ease of changing behavior by end-
users

• Testability – ease of writing tests

• Scalability – ease of improving performance with
more computing resources

4

Use Design to Control Complexity

• Software systems must be comprehensible by
humans

• Why? Software needs to be maintainable
• continuously adapted to a changing environment

• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

• Consider design costs as an investment in reducing
future costs

5

Developers spend more time understanding
code than writing it

• Study methodology:
• Instrument 18 developer’s IDEs for 740

development sessions

• Record time spent in different tasks

• Conclusion: 70% of time spent in
understanding-related tasks

• Other studies have shown similar
statistics

6

“I know what you did last summer: an investigation of how developers spend their time” Minelli, Mocci and Lanza. ICPC 2015

https://dl.acm.org/doi/10.5555/2820282.2820289

Three Scales of Design

7

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Today’s topic: design principles at the code
scale

8

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Warm-up: What is readability?

9

1. function calculateFoo(x: number, y: number, increment: boolean): number {

2. if (increment)

3. x++;

4. x *= 2;

5. x += y;

6. return x;

7. }

calculateFoo(3, 5, true) = ?

calculateFoo(3, 5, false) = ?

13

8 11

Warm-up: What is readability?

10

1.function anotherExample(value: number): void {

2. switch (value) {

3. case 1:

4. doSomething();

5. case 2:

6. doSomethingElse();

7. break;

8. default:

9. doDefaultThing();

10. }

11.}

What makes code “readable”?

• 2008 study by Buse and Weimer: Survey 120 developers on 100 snippets

11

https://dl.acm.org/doi/10.1145/1390630.1390647

Linters Enforce Basic Readability Rules

12

1. function calculateFoo(x: number, y: number, increment: boolean): number {

2. if (increment)

3. x++;

4. x *= 2;

5. x += y;

6. return x;

7. }

2:3 error Expected { after 'if' condition curly
3:5 error Expected no linebreak before this statement nonblock-statement-body-position
3:5 error Unary operator '++' used no-plusplus
3:5 error Assignment to function parameter 'x' no-param-reassign
4:3 error Assignment to function parameter 'x' no-param-reassign
5:3 error Assignment to function parameter 'x' no-param-reassign

Software engineering tools to the rescue!

Linters Enforce Basic Readability Rules

13

1.function anotherExample(value: number): void {

2. switch (value) {

3. case 1:

4. doSomething();

5. case 2:

6. doSomethingElse();

7. break;

8. default:

9. doDefaultThing();

10. }

11.}

5:5 error Expected a 'break' statement before 'case' no-fallthrough

“Too Much
Lint Causes
Fires”
• Linters have a configurable set of

rules that can be checked
cheaply and automatically

• Configure and re-evaluate lint
rules based on needs

• Different projects and contexts
might call for different rules

• Linting rules can not be defined
for all readability best-practices

14

Five general-purpose design principles for
understandability and maintainability

15

Five General Principles

1. Use Good Names

2. Make Your Data Mean Something

3. One Method/One Job

4. Don't Repeat Yourself

5. Don't Hardcode Things That Are
Likely To Change

Readability and Maintainability are Human
Factors

• Understanding code requires a
developer to:
• Access their long-term memory (e.g. for

language syntax, API documentation)
• Access their short-term memory (e.g. for

tracking keywords, variable names, etc)
• Manipulate new thoughts, ideas, etc in

working memory

• Short-term memory capacity: 7 ± 2
items

• Accessing long-term memory is much
slower

16

Long term memory

Short term memory

Working memory

Short-Term Memory Holds “Chunks”

• A chunk might be anything that has meaning

• The number of chunks in STM is fixed, but chunks
might be different size!

• Memory retention is relative to concepts you
already have

• Which of these sequences is easier to remember?
• 10, 20, 30, 40, 50, 60, 70, 80

• 50, 30, 60, 20, 80, 10, 40, 70

17

Principle 1. Use Good Names

• The name of a thing is a first clue to the reader
about what the thing means.
• often, it's the only clue

• Use good names for
• constants

• variables

• functions/methods

• data types

• Good names support chunking

18

Use Good Names for Variables and
Types

19

const temp : Temperature
const loc : SensorLocation

const t : number
const l : number

const temp : number
const loc : number

Good Names Reduce Cognitive Load

20

const t : number

t number

t number
Knowledge on
names, types

Knowledge
of names

Short-Term Memory

Long Term Memory

Working Memory

Standardizing Names is More Important
than the Standard Itself

• Using a naming convention consistently in a
codebase improves understanding

• Consider standardizing:
• snake_case vs camelCase vs PascalCase

• Abbreviations in names vs words written out fully

• Maximum name length

• For this course, use our naming policies (upcoming
slides)

21

https://neu-se.github.io/CS4530-Spring-2024/policies/style/#naming

Use Good Names for Functions and Methods

22

function checkLine (line) : boolean

function lineIsTooLong (line) : boolean

Use Good Names for Functions and Methods

• Use noun-like names for functions or methods that
return values, e.g.

• not:

• Reserve verb-like names for functions or methods
that perform actions, like

23

const c = new Circle(initRadius)
const a = c.diameter()

const a = c.calculateDiameter()

table1.addItem(student1,grade1)

Good Names Draw on Broad Long-
Term Memory Knowledge

24

const temp : Temperature

temp Temperature

temp Temperature

Short-Term Memory

Long Term Memory

Working Memory

Long Term Memory

Domain
Knowledge

Programming
Concepts

Conventions

Weather

Sensors Types

Constants i, j, k

t, temp

Weather
Knowledge

Naming
Conventions

Principle 2. Make Your Data Mean
Something

• You need to do three things:

1. Decide what part of the information in the
"real world" needs to be represented as data

2. Decide how that information needs to be
represented as data

3. Document how to interpret the data in your
computer as information about the real world

25

Example: Temperature Sensor

• We want to track the temperature of
sensors in different locations

• How should we represent our sensor and
its location?

• We need to decide:
• How to represent sensors (including their

temperature)

• How to represent temperature and locations

• How to represent a specific sensor, like one in
the bathroom

26

const temp : Temperature
const loc : SensorLocation

const t : number
const l : number

const temp : number
const loc : number

Representing a Temperature Sensor

27

type Sensor = {
 location: SensorLocation
 current: Temperature

}

type Temperature = {
 degreesFahrenheit: number

}

type SensorLocation = "Basement" | "Bathroom" | "Kitchen";

let bathroomTemperatureSensor : Sensor;
bathroomTemperatureSensor.location = "Bathroom"

The Big Picture

• How do we know that these are connected?

• Answer: we have to write it down.

• In Typescript, we do that with names, types and comments.

28

representation

interpretation

let bathroomTemperatureSensor : Sensor;
bathroomTemperatureSensor
 .location = "Bathroom"

Another Example: what do (x,y) mean?

•The center?
•Upper-left-hand corner?
•Does y grow in the up or down direction?
•And what about the units?
• (Pixels? Scaled pixels? Something else?) 29

representation

interpretation

export interface BoundingBox {
 x: number;
 y: number;
 width: number;
 height: number;

};

???

Principle 3: One Method/One Job

• Each class, and each method of that class, should
have one job, and only one job

• If your method has more than one job, split it into 2
methods. Why?
• You might want one part but not the other

• It's easier to test a method that has only one job

• You call both of them if you need to.
• or write a single method that calls them both

• Same thing for classes.

30

One Method/One Job Allows for Better In-
Memory Chunking

• Recall: we have limited capacity in our short-term
memory

• We get to remember “chunks”

• Splitting long methods into smaller ones with good
names helps us hold more code in our short-term
memory

31

applyMove

isValidMove

isWinningMove

applyMove

(some code)

(some code)

(some code)

(some code)

Short Term Memory:
”applyMove” split into

helper methods

Short Term Memory:
”applyMove” in one big

method

Principle 4: Don't Repeat Yourself

• If you have some quantity that you use more than
once, give it a name and use the name.

• That way you only need to change it in one place!

• And of course you should use a good name

• If you have some task that you do in many places,
make it into a procedure.

• If the tasks are slightly different, turn the
differences into parameters.

32

A real example

33

function testequal <T> (testname: string, actualVal: T, correctVal: T) {
test(testname, () => { expect(actualVal).toBe(correctVal) })

}

describe('tests for countOfLocalMorks', function () {
testequal('empty crew',countOfLocalMorks(ship1),0)
testequal('just Mork',countOfLocalMorks(ship2),1)
testequal('just Mindy',countOfLocalMorks(ship3),0)
testequal('two Morks',countOfLocalMorks(ship4),2)
testequal('drone has no Morks',countOfLocalMorks(drone1),0)

})

Beware of clones

• Terminology: “Code Clone” – a copy (or near-miss
copy) of code within a codebase

• Clones are created when DRY is violated

34

int foo(int j){

 if(j<0)

 return j;

 else

 return j++;

}

int goo(int j){

 if(j<0)

 return j;

 else

 return j--;

}

int getOrOffset(int j,

boolean increment){

 if(j<0)

 return j;

 else {

 if(increment)

 return j++;

 else

 return j--;

 }

}

Principle 5:
Don't Hardcode Things That Are Likely To Change

• General strategy: If there something that might
change, give it a name
• if it's not already a "thing", refactor to make it a "thing“

• Making it a “thing” makes it easier to understand!

• Let’s look at a couple of examples.

35

• Replace magic numbers with good names

Replace magic numbers with good names

36

const salesTaxRate = 1.06
const salesPrice = netPrice * salesTaxRate

const salesprice = netPrice * 1.06

Example

• Imagine we are computing income tax in a state
where there are four rates:
• One on incomes less than $10,000

• One on incomes between $10,000 and $20,000

• One on incomes between $20,000 and $50,000

• One on incomes greater than $50,000

• You might write something like

37

You might write something like

• What might change?
• The boundaries of the tax brackets might change

• The number of brackets might change

38

function grossTax(income: number): number {
if ((0 <= income) && (income <= 10000)) { return 0 }
else if ((10000 < income) && (income <= 20000))
{ return 0.10 * (income - 10000) }
else if ((20000 < income) && (income <= 50000))
{ return 1000 + 0.20 * (income - 20000) }
else { return 7000 + 0.25 * (income - 50000) }

}

So let's represent our data
differently

39

// defines the tax bracket for income lower < income <= upper.
// if upper is undefined, then lower < income (no upper bound)
type TaxBracket = {

lower: number,
upper: number | undefined,
base : number
rate : number

}

const brackets : TaxBracket[] = [
{lower:0, upper:10000, base:0, rate:0},
{lower:10000, upper:20000, base:0, rate:0.10},
{lower:20000, upper:50000, base:1000, rate:0.20},
{lower:50000, upper: undefined, base:7000, rate:0.25}

]

And now it's easy to rewrite our function

40

// defines the incomes covered by a bracket
function isInBracket(income:number, bracket:TaxBracket) : boolean {

if (bracket.upper === undefined)
{ return (bracket.lower <= income) }
else
{ return ((bracket.lower <= income) && (income < bracket.upper))}

}

function income2bracket(income: number, brackets: Bracket[]): Bracket {
 return brackets.find(b0 => isInBracket(income, b0))
}

function taxByBracket(income:number,bracket:TaxBracket) : number {
return bracket.base + bracket.rate * (income - bracket.lower)

}

function grossTax2 (income:number, brackets: TaxBracket[]) : number {
return taxByBracket(income,income2bracket(income,brackets))

}

Review: Learning Objectives for this Lesson

• You should now be able to:
• Describe the purpose of our best practices for code-level

design

• List 5 principles for designing readable code, with
examples

• Identify some violations of the practices and suggest
ways to mitigate them

41

	Module 04 Code Level Design
	CS 4530: Fundamentals of Software Engineering��Module 04 Code-Level Design Principles
	Learning Objectives for this Lesson
	Use Design As a Way of Communicating Organization
	Use Design to Achieve Non-Functional Qualities
	Use Design to Control Complexity
	Developers spend more time understanding code than writing it
	Three Scales of Design
	Today’s topic: design principles at the code scale
	Warm-up: What is readability?
	Warm-up: What is readability?
	What makes code “readable”?
	Linters Enforce Basic Readability Rules
	Linters Enforce Basic Readability Rules
	“Too Much Lint Causes Fires”
	Five general-purpose design principles for understandability and maintainability
	Readability and Maintainability are Human Factors
	Short-Term Memory Holds “Chunks”
	Principle 1. Use Good Names
	Use Good Names for Variables and Types
	Good Names Reduce Cognitive Load
	Standardizing Names is More Important than the Standard Itself
	Use Good Names for Functions and Methods
	Use Good Names for Functions and Methods
	Good Names Draw on Broad Long-Term Memory Knowledge
	Principle 2. Make Your Data Mean Something
	Example: Temperature Sensor
	Representing a Temperature Sensor
	The Big Picture
	Another Example: what do (x,y) mean?
	Principle 3: One Method/One Job
	One Method/One Job Allows for Better In-Memory Chunking
	Principle 4: Don't Repeat Yourself
	A real example
	Beware of clones
	Principle 5:�Don't Hardcode Things That Are Likely To Change
	Replace magic numbers with good names
	Example
	You might write something like
	So let's represent our data differently
	And now it's easy to rewrite our function
	Review: Learning Objectives for this Lesson

